
A MODEL BASED METHODOLOGY FOR SCA WAVEFORM DESIGN
ENHANCING PORTABILITY: APPLICATION TO THE FM3TR WAVEFORM

APPLICATION
Frédéric LE ROY (ENSTA Bretagne, Brest, France, frederic.le_roy@ensta-bretagne.fr)
Joël CHAMPEAU (ENSTA Bretagne, Brest, France, joel.champeau@ensta-bretagne.fr)

Jean-Philippe DELAHAYE (DGA MI, Bruz, France, jean-philippe.delahaye@dga.defense.gouv.fr)

ABSTRACT
The software design of Software Defined Radio (SDR)
systems in the military domain rely on the use of
standardized and open technologies. The SCA was
developed with regards to several goals among the
following: the use of Commercial Off-The-Shelf (COTS)
technologies, portability of software applications,
modularity and reusability of software, hardware
abstraction. SCA also allows scalability of its architecture
over different types of platforms. Contributions on tooling
for modeling, simulating, developing waveforms or for
entire system design. COTS tooling has to constantly
evolved and often coming from various domains tackle
partially the many challenges of SDR waveforms and
systems design. Thank to the MoPCoM project and its
MDD based methodology, this paper will present an
ongoing study that aims to contextualize the MDD flow
for the SCA waveform design.

1. INTRODUCTION

1.1. The military SDR Context
The software design of Software Defined Radio (SDR)
systems in the military domain rely on the use of
standardized and open technologies.
The Software Communications Architecture (SCA) [1] is
a software architecture developed and standardized in the
Join Tactical Radio System (JTRS) military program that
was initiated in early 1997. Synthetically presented in [2]
the SCA is a software architecture to be deployed onto
SDR platforms; it provides abstraction to the waveform
application from the hardware architecture.
In may 2006, the JTRS has publicly releases the SCA
v2.2.2 specifications that represent the major contribution
of standardization in SDR. In august 2010, the JTRS with
the WinnForum has organized a general meeting to
discuss about the enhancements to the SCA. As the SCA
v2.2.x is suitable for large radios, the SCA Next proposal
has the objective to provide more flexibility to address
more efficiently the design of low-power, low capacity
radio.
At the European level the ESSOR program will propose a
SCA-like standard compliant with the SCA v2.2.2 that
defines Operating Environment extensions for DSP and
FPGA devices.

Some other contributions on standardization are the PIM
and PSM SWRadio Components Profile released by the
OMG in 2007, and the SDR Framework from the
WINTSEC EU project.
The SCA specification is a set of requirements that help to
produce portable software code, but it does not ensure it.
The software design process is also a key factor. Then in
2009 the JTRS releases the “Waveform Portability
Guideline” document [3] that addresses the practices for
software development to enhance the waveform
portability.

1.2 The SCA Software content
The SCA defines an Operating Environment (OE) through
a set of requirement specified in [1]. The Operating
Environment is defined as a layered software architecture
that provides the abstraction to separate the application
software from the hardware layer. The POSIX Operating
System (OS) is the lower level of the OE. A subset of OS
functions is defined called Application Environment
Profile (AEP) for direct application calls to the OS. The
middleware services based on CORBA are used to
manage exchanges between the software components
distributed over the platform resources. On top of that the
Core Framework (CF) is defined through four groups of
interfaces, 1) Base Application Interfaces, 2) Base Device
Interfaces, 3) Framework Control Interfaces, 4)
Framework Services Interfaces. The Core Framework
provides management, control, deployment and
configuration services of all the system software
components for application resources and hardware
devices. The CF interfaces are implemented using the
Interface Description language (IDL) of CORBA.
The SCA specifications also include the Domain Profile
which is a structured set of XML files. These files
describe all the resources within the SCA system in terms
of components, ports, interconnections, properties,
locations and capacity models.

1.3 Waveform software
Facing the multiplicity of the waveforms and the diversity
of the platform architectures and form factors, the original
aims of the SCA are to facilitate the waveform
development in terms of portability and waveform
deployments onto heterogeneous SDR platforms

Proceedings of SDR'11-WInnComm-Europe, 22- 24 Jun 2011

Copyright(c) 2011 The Software Defined Radio Forum Inc. - All Rights Reserved239

The waveform applications are composed of a collection
of component interconnected to each others through ports.
The ports provide or use services relying on interfaces
defined by the SCA Base Application Interfaces. The
JTRS API supplements could be additionally used by an
application component ports as for example the Packet
API.
The application is described in the Domain Profile, by the
Software Assembly Descriptor (SAD) which includes the
list of the application’s components, their placements,
configurations and interconnections. Each component is
itself described into several XML files, the Software
Package Descriptor (SPD), the Software Component
Descriptor (SCD), and the properties files (PRF).
The remainder of the paper is structured as follow. The
next section discusses about different design approaches
related to the Model Driven Design (MDD) in the domain
of SDR and the tools that specifically help to develop
SCA applications. The section 3 will present the model
based MOPCOM process on which our approach
derivates. The section 4 presents our model based
methodology based on MOPCOM process, the project
process to perform the porting of the FM3TR waveform
onto 2 different platforms and the first result on the
methodology.

2. BACKGROUND

The interest in the MDD approaches is going in the same
way that the goals purchasing by the military SDR
standardization activities described in the above
introduction. The MDD brings to these aims an increased
level of abstraction needed for more separation of
concerns during waveform design. By using high level
abstraction language such as UML, MDD provides
independence of the model from the sources code
languages, facilitates the project collaboration by the
shared views of models, generating an automatic
documentation early in the design process.
Within the SCA scope, the possibility for modeling tools
that embed a SCA profile to generate SCA source code,
and Domain Profile files could also help to automate some
parts of the certification process.
This part will overview some of the MDD approaches that
address the modeling issues of the SCA applications and
some of the existing tools that provide facilities for SCA
waveform development.

2.1. Introduction to MDA
One of the model based design approach with high level
of specification maturity is the standardized Model Driven
Architecture (MDA) [4] coming from the OMG. OMG
solution addresses the design of interoperable and
distributed applications through the use of models. The

MDA separates the application domain aspects from the
technical specific aspects with the development of a
methodologies based on model transformations within a
Y-chart co-design flow. A Platform Independent Model
(PIM) of the application is mapped onto a Platform Model
(PM) representing the target architecture. The result of
this models mapping is a Platform Specific Model (PSM)
that represents the implementation.

2.2 Related works on the SDR SCA Domain
Coming with the SCA standardization that aims at
providing more waveform portability, some domain
specific tools have been developed. Commercially
available tools such as Zeligsoft CE, Spectra Tools (first
generation of tools), its successor Spectra CX or the SCA
Architect form the CRC, aim at providing facilities to
developers to produce SCA compliant code and to deploy
it onto platforms. Despite the evolution of these offers that
are mainly GPP centered, waveform portability is an
active topics in the research domain with many
contributions [5] [6] [7] [8] [9] [10], presented during the
past 10 years at the conferences such as MILCOM or the
SDR technical conference.

The Government Reference Architecture (GRA) [11] is a
proposal supported, among others, by the CERDEC for
SATCOM terminal system design. GRA further defines a
process with MDA model approach using SysML/UML
modeling tools through four level of abstraction to capture
system’s functionalities, architecture, interfaces. The first
level of modeling allows capturing the system’s behavior
with scenarios, uses cases and the system’s functional
modules. It is the Computational Independent Model
(CIM) level as defined by the OMG. The second level is
the PIM refining the CIM, by defining system architecture
with its abstract interfaces and CIM functional allocation
onto the architecture.
The GRA is focused on these two first levels of modeling
and also addresses two model refinements with the PSM
level and the Platform Specific Implementation (PSI),
more details on GRA available in [12]. It addresses
waveform portability in the way that it facilitates code
integration over multiple platforms by providing common
set of modeling elements to represent them.
The GRA integrates the SCA as an operating platform
basis on its testbed. The tools are Rhapsody for UML
SysML Modeling, and Spectra CX for the SCA domain
specific aspects.
In particular, the experience report [13] describes in detail
a tool chain based on Rhapsody and Zeligsoft CE (now
CX) tools and the associated waveform development
process. Here the development process is iterative with
three steps.

240

The first step consists in modeling with Zeligsoft tool the
SCA components and the waveform, then the source code
corresponding to the skeleton (infra-structure code) and
the Worker class (that will encapsulate the functional
code) of components are generated by the Zeligsoft Code
Generator.
The second step is a reverse–engineering operation that
allows obtaining a class model of the previous Worker
class into the Rhapsody tool. The functional code is then
inserted to the UML model and next Rhapsody’s
generator generates the source code.
The last step consists to compile the component code with
makefiles that take into account the specific constraints of
the target platform (OS, ORB, CF).
Some other modeling approaches lean on the waveform
simulation deployed onto virtual platforms. The project
[14] from MITRE proposes a waveform porting
environment where the platform is modeled at Transaction
Level Modeling (TLM). The simulation of platform is also
adopted in [15]. A SystemC TLM simulation is used for
PIM and PSM model of SDR platforms. The proposal also
defines a waveform development methodology that allows
simulating waveform PIM within the SystemC virtual
platforms.
As presented above, many works deal with waveform
modeling, simulating, development approaches steps of
the porting process. Despite these contributions to
enhance portability, additionally to the standardization
efforts, there are few contributions proposing tools to
characterize the portability level and performance of SCA
waveform code. A Datasoft has presented in [16] some
tools that address the performance analysis and port
complexity. The DataSoft Waveform Analysis Tool
(DSWFAT) handles estimation of source code complexity
of SCA waveforms, using complexity porting metrics. The
tool helps to caracterise the porting complexity with
complexity metrics applied to the domain of SCA
waveform as listed in the Waveform portability guideline
[3]. The Datasoft Software Probe (DSSP) probes the inter-
component messages at run time on target platform. The
measurement are processed by the tool to caracterise the
component complexity, giving visualization capabilities to
help during the porting effort. The authors of [16] also
mention the possibility for DSSP to be integrated with the
Zeligsoft tool.

Today, the SCA v2.2.2 is platform specific through the
specification related to CORBA. So there are several
issues to fully apply an MDA approach to the waveform
development. This situation implies that a waveform could
not directly be described as a PIM using the SCA v2.2.2
as a profile.
The SCA Next release has the objective to transform the
SCA to a platform independent specification and in the

same time SCA Next aims at providing different type
profile to target different type of platform.
According to this future context, we believe that SCA
waveform development will fully take advantages of
MDA process, and gain on portability with also the
condition of MDA tooling availability.

3. PROCESSUS DE DEVELOPPEMENT DE
FORME D’ONDE SCA

This section presents the MoPCoM
(http://www.mopcom.fr) MDA process developed in the
scope the MoPCoM project. We choose the MoPCoM
process and its associated tooling to apply it to the
development of SCA waveforms.
Originally, the MoPCoM process has been formalized
through the SPEM meta-model to bring the benefits of the
MDA technologies to the Electronic Design Automation
(EDA) domain. The goal of MoPCoM is to give ability to
the system designers to manage the growing complexity of
the SoC/SoPC design and to share common view early in
the process with the application developers.

3.1. MoPCoM process overview
Thanks to the authors, an extract of our paper [17] shows
below a rapid description of the MoPCoM process.

“The MoPCoM methodology is a methodology defined to
develop SoC/SoPC applications [17], [18]. This
methodology is based on UML and MDD. It is a
refinement of the MDA Y-chart dedicated to design space
exploration and Platform Based Design. The MoPCoM
process proposes a structured iterative process of
modeling. It takes as input functional, non-functional and
allocation requirements expressed in SysML. The Figure 1
gives an overview of the process, highlighting 3 modeling
levels:

• The Abstract Modeling Level (AML) is intended
to provide the description of the expected level
of concurrency and pipeline through the
mapping of functional blocks onto a virtual
execution platform,

• The Execution Modeling Level (EML) is
intended to provide a generic platform defined
in term of execution, communication or storage
nodes in order to proceed to coarse grain
analysis,

• The Detailed Modeling Level (DML) is intended
to provide a detailed description of the platform
in order to proceed to fine grained analysis. It
allows RTL code generation for harware
(VHDL) and software (C) parts including glue
logic (drivers).”

241

Figure 1 : MoPCom Process Overview [17]

3.2. MoPCom Process Tooling Support
The domain specific MDD tools could be classified as
they accomplish different roles during the development
process.
The first type of tool used in the MoPCoM process is the
creation tool (modeler), a model development
environment used to create and edit the models
encompassing the set of meta-models used to describe
system to design. The second type of model meet in the
MopCoM process is model transformation tool by means
of it, produces from the model different kind of artifacts
like source code, documentation, or other models. The
third kind of tool taking place in the process is the analysis
tool with the goal of verifying the rules on models, check
the completeness, inconsistencies, produces error and
warning reports. This rules checking operates at the
different level of abstraction of the process and also
allows the measurement of metrics associated to the

model. Finally the last type is the simulator tool in charge
to simulate the execution of the model at the different
level of abstraction. It allows to plays and verifies the uses
cases defined in the functional level (CIM).
The panel of tools for model is wider, some other kind of
tool exists like the test tools, composition tools (for
merging), metadata management tool, or reverse
engineering tool that could be use in the scope of
MoPCoM Process but not mandatory.
One of the main interests in a MDA based methodology is
the capability to associate through a process the
previously described tools appropriated for a specific
domain. The XMI standard aims allows exchanging
models between MDA tools. Then, at each step of the
process, the replacement of one tool by another is
possible. The advantage is that the models are fewer
dependants of the tools than with a traditional tooling
chain.

242

During the MoPCoM project, the modeler and simulator
tool was Rational Rhapsody from IBM. It allows the
functional model capture, and model simulation at
different levels of abstraction of the process. However, in
some cases like dataflow oriented cases, SystemC code
generation is preferable to accelerate the simulation using
standard EDA simulation tools.

The transformation and code generation tool was the
MDWorkbench from Sodius Company. This tool allows

generating from the AML and EML level, C++ or
SystemC source code that could be useful for model
simulation. It also allows generating C, C++ or VHDL
code for the target platforms. This tool in integrated
within Rhapsody through the OnDemend connector that
allows import and export of models without the need of
exchanging the whole model data each time. This
functionality widely accelerates the import and export
operations.

The tool for model analysis is Kermeta [19]. It is used
during the process in order to verify the set of
methodological rules captured in form of Kermeta
constraints. The tool covers all the models by checking the
rules at each level of abstraction.

4. MOPCOM PROCESS BASED
WAVEFORM DESIGN

The first purpose of this section is to show if it is possible
to adapt the MoPCom design to a SCA waveform process.

The second and third parts show a single simulated use
case of an abstract model of the FM3TR waveform. The
last section gives an overview of our outcomes on this
subject.

A signal processing application has been modeled in UML
by MoPCom consortium. The simulation of system‘s uses
cases couldn’t be executed by Rhapsody modeler. So, we
chose to simulate the AML model of the waveform

Figure 2 : Waveform DevelopmentProcess

243

outside the process MoPCom with Simulink tool chain

4.1. Design process
Figure 2 displays an illustration of our waveform design
process proposal. This one is based on: MoPCom process
[17], MDA tools and SCA deployment tool. Model

exchange between tools is provided by the XMI standard
interchange format. Unfortunately, such model exchanges
between tools are not always correct and some
information must still be added manually by developers.
Codes generated and simulated (shown in yellow in this
figure) under the control of the process are then integrated
into the SCA components (sown in blue color)

4.2. FM3TR case study
The Future Multi-Band Multi-Waveform, Modular
Tactical Radio (FM3TR) was specified in [20] and the first
Simulink model was first published for voice transmission
in [5]. This classical waveform consists of four network‘s
layers PHY, MAC, DLC and NWK spread over the first
three layers of the OSI model.
To simplify this case study, we chose to only model and
simulate the physical layer of this waveform.
This layer uses a FHSS (Frequency Hopping Spread
Spectrum) modulation scheme associated to a Minimum
Phase Shift Keying (MSK) modulation with a data
rate skbR /25= . The carrier frequency of transmitted
signal follows the hop profile timings shown in Figure 4.

Nrt NrtNinf Ntt Nrt

Ndot
Figure 4 : Hop representation [20]

Table 1 and Figure 4, extract from specifications [20],
defines three profiles of frequency hopping TW#1a,
TW#1b and TW#2. The data transmitted by the physical
layer during the dwell time period is Ninf.

Tableau 1 : Hop profile timings [20]

Timings in bits TW#1a TW#1b TW#2

Ninf 80 40 10

Nrt 5 2,5 0,5

Ntt 10 5 1

Ndot 20 10 2

Ndot+Ninf 100 50 12

f (hop/s) 250 500 2083.3

Frequencies are selected from a set of 128 frequencies
gotten by a secure transmission (TRANSEC). The
message transmit by a physical layer on the radio channel
is divided into frames. Each of one are composed of five
frequencies hopping and only four of them are carrying
useful information. The last hop ensures the management
of synchronization between transmitter and receiver. Each
message is preceded by a preamble synchronization of
constant size and ends with two frames carrying an end of
synchronization message (EOM: End Of Message).

4.3. Experiments
This section is composed of two parts, the first one
describes simulation’s results of Simulink model and
second one gives feedback of this simulation on SCA
waveform development.
4.3.1. FM3TR’s modeling and simulation
We have modeled in Simulink (see Figure 3) the exchange
of a text file between two physical layers. In Figure 3, the
text file to transmit is 76 characters long.

Figure 3 : FM3TR Simulink model with TW#2 hop profile configuration

244

As shown in this simulation, when transmitter and receiver
are configured to TW#2 hop profile, transmitter segments
the file into 16 frames. The last one just contains 8 bits of
data over the 40 bits transmitted.
In Figure 3, the receiver has received 17 frames instead of
the 16 planned (see Table 1). This difference came from a
ghost’s frame added by transmitter to confirm end of
message synchronization.
4.3.2. Feedback
This model was first performed to generate test files of
elementary modules of the physical layer.
We also wanted to use this model to make a rapid
prototyping of modules embedded by non-CORBA
components or under SCA API.
Unfortunately, model designed couldn’t be executed by
Simulink under 5 minutes if simulation engine wasn’t
setting up to discrete mode with a variable sampling time.
In this pattern model, sampling time depends on signal’s
vectors size and frequency’s parameter of source’s bloc.
Thus, RTW tool that can generate C language source code
can’t be used if simulation engine isn’t setting up to fixed
sampling time. Using our model for code generation is
then possible with manual recoding over cost.

Thus, simulations are more difficult to perform above the
physical layer because protocols used are difficult to
model by the Model of Computation (MoC) Synchronous
Data Flow (SDF) of Simulink. Indeed, in this model’s
type, sampling period can be made implicitly defined by
tuse of buffer / unbuffer blocs. For such a model,
development time is quite difficult to control. For
example, protocol’s layers like FM3TR DLC layer
implement a state machine that makes software
components inactive during a period that depends on radio
channel’s load. As most of communication systems,
FM3TR can therefore be classified as Asynchonous
Globally Locally Synchronous (GALS) systems that are
particularly difficult to model and particularly on OSI
layer which implements protocols.

In addition, SCA’s components are currently based on
CORBA middleware. In draft specification of future
standard SCA Next, this constraint was relaxed and
software architecture core framework has accordingly
been adapted. In this kind of model, data processing is
made by asynchronous call to distribute services. Size of
CORBA packets transmitted by this software bus can be
configured by setting ORB (Object Request Broker)
before starting it on platforms. Furthermore, latency
induced by CORBA use is difficult to predict [21] as it
strongly depends on performance of execution platform.
As a result, queues often must be inserted between ports
of the components of PSM model to compensate delays

CORBA message contention on hardware buses and
network layers.

Whether at PIM or PSM models system’s simulation is
not so easy to do. Indeed, model execution (PSM model
deployed) must verify by use cases (installation,
configuration, starting or stopping SCA waveform). These
checks could be made only if executables models of ORB
and operating system are available for platforms. This
choice based on virtual platforms modeled in SystemC has
been proposed in [15]. This proposal is very attractive
because it offers several levels of abstractions that can be
executed. Nevertheless, for a developer team this proposal
implies to hold man power just for maintenance of
platforms’ models.

We defend SystemC code generation through
MDWorkbench tool of process MoPCom. Then models
generated can be simulated for requirements validation
defined by the UML diagrams (Use Case type) of the CIM
model. Unfortunately, test environments generation based
on use case model is not yet possible (choice of action
language, operational semantics, tool integration …).
Additionally, process MoPCom can’t generate executable
models composed by several MoC.

5. CONCLUSION AND FUTURE WORKS
An overview of our future works can be extract from
Figure 2. The analysis tool of MoPCom process can check
a set of rules that models should respect. Some
requirements associated with specifications such as SCA
2.2.2, ESSOR can be formalized using OCL (Object
Constraint Language) and checked by the analyzer tool. In
the same way, we are working on metric computation
introduced in paper [3] to provide an idea of the
portability of SCA models.
In such MDA process, this separation of concerns should
soon improve the certification of software radio terminals
with standardized software architectures. Thanks to a
custom and flexible tool, MDA technology used in SCA’s
context allows multiple trades to work at different step of
waveform‘s life cycle design

6. ACKNOWLEDGEMENTS
This research is in part supported by the French DGA
(General Armaments Directorate) the French procurement
agency and by the ENSTA Bretagne Laboratory.
The views expressed in this paper are those of the authors
and cannot be regarded as stating an official position of
the DGA or the French DoD.

245

7. REFERENCES
[1] JTRS Standard, Joint Program Executive Office of the Joint

Tactical Radio System, “Software Communications
Architecture Specification”, Final/15 May 2006 V.2.2.2

[2] C. R. Aguayo Gonzalez, C. B. Dietrich, J. H. Reed,
“Understanding the Software Communications
Architecture”, In proceedings of IEEE Communications
Mag., September 2009.

[3] JTRS Standard, Joint Tactical Radio System Network
Enterprise Domain Test & Evaluation, “Waveform
Portability Guidelines”, December 2009 V.1.2.1,
http://sca.jpeojtrs.mil/_downloads/20091228_1.2.1_NEDT
E_PORT_GUIDE.pdf

[4] Object Management Group OMG, “MDA Guide Version
1.0.1”, 2003.

[5] M.S. Gudaitis et R.D. Hinman, “A waveform Description
Language for Software Defined Radio”, In proceedings of
SDR’02, November 2002.

[6] V.J. Kovarik, “SDR Architecture Impacts On Waveform
Portability and Cost Modeling”, In proceedings of SDR’06,
Wyndham, 13-17 November 2006.

[7] Y. Zhang, S. Dyer, N. Bulat, “Strategies and Insights into
SCA-Compliant Waveform Application Development”, In
proceedings of MILCOM’06, December 2006.

[8] T. Kempf, E.M. Witte, V. Ramakrishnan, G. Ascheid, M.
Adrat, M. Antweiler, “A Workbench for Waveform
Description Based SDR Implementation”, In proceedings
of SDR’07, November 2007.

[9] J. Hogg, F. Bordeleau, “Optimizing Portable SDR
Software”, In proceedings of SDR’07, November 2007.

[10] S. Singh, M. Adrat, M. Antweiler, “Nato RTO/IST RTG on
SDR: Demonstrating Portability and Interoperability of
SCA-Based Waveforms”, In proceedings of SDR’09,
December 2009.

[10] P. Johansson, Z. Cao, W. Hodgkiss, “Rapid Porting of an
FMRTR Waveform”, In proceedings of SDR’09, December
2009.

[11] T. Rittenbach, V.J. Kovarik Jr, R. Krause-Aiguier and C.
Steward, “Complex Terminal Systems Design : Minimizing
Time to Deployment”, In proceedings of IEEE
MILCOM’10, San Jose, October 31 – November 3 2010

[12] T. Rittenbach, H. Satake, E. Redding, K. Perry, M.
Thawani, C. Dietrich and R. Thandee, “GRA Model Driven
Process”, In proceedings of IEEE MILCOM’10, San Jose,
October 31 – November 3 2010.

[13] S-P Lee, M. Hermeling, C-M Poh, “Experience Report:
Rapid Model-Driven Waveform Development with UML”,
In proceedings of SDR’08, December 2008.

[14] K. Skey and J. Atwood, “Virtual Radios –
Harware/Software Co-design Techniques to Reduce
Schedule in Waveform Development and Porting”, In
proceedings of IEEE MILCOM’08, San Diego, 17-19
November 2008.

[15] G. Gailliard, E. Nicollet, M. Sarlotte and F. Verdier,
“Transaction Level Modelling of SCA Compliant Software
Defined Radio Waveforms and Platforms PIM/PSM”, In
proceedings of DATE’07, Nice, 16-20 April 2007.

[16] L. Dunst, S. Aslam-Mir, B. Duthler, E. Miles, A. Goff and
M. Lerch, “A Novel Approach to Diagnosing Problems in
SCA Waveforms During Development and Porting”, In
proceedings of SDR’09, Washington, DC, 1-4 December
2009.

[17] A. Koudri, J. Champeau, D. Aulagnier, and P. Soulard,
“MoPCoM MDD Process Applied to a Cognitive Radio

System Design And Analysis”, In proceedings of ECMDA-
FA, Twente, 23-26 June 2009.

[18] A. Koudri, J. Champeau, D. Aulagnier and D. Vojtisek,
“Processus de développement UML/MARTE MoPCom
pour le codesign”, Génie Logiciel, 2009.

[19] INRIA, “Kermeta metaprogramming environment”,
http://www.kermeta.org.

[20] P. Mou, “Test Waveform Specifications Issues 2.0”,
FM3TR Technology Group, 1999.

[21] G. Abgrall, F. Le Roy, J.P. Delahaye, J.P. Diguet, G.
Gogniat, “Predictibility of inter-components latency in a
Software Communications Architecture Open
Environment”, 24th IEEE International Parallel and
Distributed Processing Symposium, Atlanta, 19-23 April
2010.

246

